打造卓越的数字信息运用服务商!
AI人工智能在弱电行业的应用趋势
时间:2021-03-18
8月29日下午,2019年世界人工智能大会科学前沿高峰主论坛在上海世博中心举行。一批人工智能领域最具影响力的权威专家、著名学者、业界精英相聚上海,共议世界人工智能发展大势,探讨人工智能科学前沿。科技部副部长李萌、上海市副市长吴清出席论坛并致辞。

吴清副市长指出,创新是人工智能发展的第一动力,当前人工智能呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征,智能连接世界的时代正在向我们走来。上海正加快建设人工智能创新策源高地,加强前沿基础研究,布局建设一批重大科技基础设施、创新中心和创新实验室,成立了全球高校人工智能学术联盟、青年AI科学家联盟等高端学术团体。未来,将进一步集聚龙头企业、重点机构等各方力量,共建开放算力、开源算法、数据训练等平台,突破类脑智能计算、自主开放学习等前沿理论,努力攻克自主无人智能系统等关键核心技术,争取在前沿基础和应用理论研究方面,贡献具有全球影响力的重大原创成果。

 

李萌副部长指出,人工智能逐步成为引领新一轮科技革命和产业革命的战略型技术,全球产业界纷纷抢滩布局。我国在人工智能前沿理论方面的基础较为薄弱,亟需组织创新研究力量,依托高校、科研院所和企业重点实验室,聚焦突破人工智能基础交叉理论、重大基础理论和共性支撑技术,开展重点任务群和重大工程布局。今年5月,科技部与上海市共同启动了上海国家新一代人工智能创新发展试验区建设,将重点提升人工智能原始创新策源能力,聚焦“全息空间群智智能”“自主智能无人系统”“后深度学习机器智能”“类脑智能”等基础理论研究方向,集中攻关重大基础理论,建设人工智能创新平台集群,打造人工智能战略性科技力量。

 

图灵奖获得者Raj Reddy分享了近十年人工智能发展新的趋势,表示人工智能理论范式由知识编码向机器学习和深度学习发生转变。

对历经多年快速发展的安防行业来说,每时每刻都在产生大量的数据,是非常理想的算法迭代资源。近年来,安防已成为人工智能技术最具基础、发展最快的应用落地行业。接下来,正翔智能就带领大家一起分析下人工智能技术对弱电安防行业的应用趋势。

一、结合数据采集的安防AI人工智能

自从道路监控系统在全球兴起之后,目前世界各国的城市监控建设即将进入扩张与结构改变的阶段,在这种需求变革下,安防监控系统将需要更多元化与人工智能化的整体解决方案。现代化的公共安全已不再仅止于无限的扩充影像监控覆盖密度、广度以及追求超高清解晰度,而是透过这些人工智能化的手段与工具,让传统安防时代更进一步,转向注重数据采集、应用和管理的人工智能化安防时代。

全球城市道路监控建设都在快速发展,各国街道、十字路口随处可见各种摄影机监控设备,为城市公共安全及治安侦察工作提供了影像的方便性和立即性。但随着监控设备数量的大量倍增,影像解析度的不断提高,公共安全搜集到的影像和图片之数据量呈现等比几何的增长,再加上影像解析度的提高,连带使伺服器的处理能力和使用率都产生了更高的门槛。因此,安防影像监控在影像调阅、门禁进出数据、资料的储存、运算等技术上都面临巨大挑战。

二、AI人工智能与安防监控的应用技术

面对这样的挑战,安防监控使用者如何能在大量增加的数据中,利用既有的人工智能技术快速获取有价值的资料,便成为当前最重要的课题。以下简述几种与安防监控结合的AI人工智能技术:

1、人工智能的模式识别技术

通常在监控系统收集的影像数据资料中,资料本身并不具价值,必须再经过深度挖掘、分析资料中影像呈现的数据模式,才会产生出真正有用的价值。未来是大数据的时代,数据资料的模式识别将备受重视。

一、结合数据采集的安防AI人工智能

自从道路监控系统在全球兴起之后,目前世界各国的城市监控建设即将进入扩张与结构改变的阶段,在这种需求变革下,安防监控系统将需要更多元化与人工智能化的整体解决方案。现代化的公共安全已不再仅止于无限的扩充影像监控覆盖密度、广度以及追求超高清解晰度,而是透过这些人工智能化的手段与工具,让传统安防时代更进一步,转向注重数据采集、应用和管理的人工智能化安防时代。

全球城市道路监控建设都在快速发展,各国街道、十字路口随处可见各种摄影机监控设备,为城市公共安全及治安侦察工作提供了影像的方便性和立即性。但随着监控设备数量的大量倍增,影像解析度的不断提高,公共安全搜集到的影像和图片之数据量呈现等比几何的增长,再加上影像解析度的提高,连带使伺服器的处理能力和使用率都产生了更高的门槛。因此,安防影像监控在影像调阅、门禁进出数据、资料的储存、运算等技术上都面临巨大挑战。

二、AI人工智能与安防监控的应用技术

面对这样的挑战,安防监控使用者如何能在大量增加的数据中,利用既有的人工智能技术快速获取有价值的资料,便成为当前最重要的课题。以下简述几种与安防监控结合的AI人工智能技术:

1、人工智能的模式识别技术

通常在监控系统收集的影像数据资料中,资料本身并不具价值,必须再经过深度挖掘、分析资料中影像呈现的数据模式,才会产生出真正有用的价值。未来是大数据的时代,数据资料的模式识别将备受重视。

四、姿态识别技术

姿态识别技术是指针对个体人物的走路姿势,是一种可在远距离就感知的生物行为特征技术。和其他生物特征识别技术相比,姿态识别的优势在于非接触性、非侵入性、易于感知、目标物难以隐藏和伪装等。姿态分析还可以轻松的区分出个体人物的不同行为模式,例如是在行走中、奔跑中、还是携负重物等。基于这些优点,姿态识别特别适用于门禁系统、安全监控、人机交换、医疗诊断等部分,尤其在安防领域中具有广泛的应用和经济价值。

姿态分析的技术困难点在于其特征的稳定性问题,因为一个人的姿态会因生病受伤、体型胖瘦变化、穿衣多寡甚至是穿着舒适度等因素影响而改变,部分厂商为了克服这个问题,特别在研发上加进了机器深度学习方法,用姿态向量图示来描述姿态顺序排列,透过深度累积神经网路训练匹配模型。训练好的累积神经网路匹配模型能够计算待识别的姿态影像和已经注册的姿态影像顺序排列,比对每个姿态向量图的相似度,再依据其相似度大小进行身份识别。姿态识别应用采全天候模式,在特定的安防场合中可快速对远距离个体人物目标的身分进行准确判断,因此研究人员将来势必需要建置大规模的姿态资料库。姿态识别技术将有助于解决一些低影像晰度个体人物身份识别的难题,为使用者提供重要的识别查核线索。

五、3D相机技术

身高是人体重要的资料特征之一,在一些特定的场所,例如风景区入口、车站收票口等对身高要求都有明确的规定。传统利用尺度工具测量身高的方法虽然操作简单,但需要被测人员配合,不仅速度慢,精确度也较差;超声波、红外线等方式虽可实现自动测量、精准度较高,但对测量环境条件的要求有较多限制,不适合用于公共场所,而3D电脑视觉技术的3D相机则可以很好地解决上述问题,提供多场景、非接触式、自动化的量测。3D相机是利用深度感测器获取现实场景的深度资料和颜色资讯,透过座标变换建立深度资料与3D座标之间的对应关系,然后藉由去杂讯、配对位准等运算法去除干扰并减小误差,最后再以3D重建的方法得到身高以及其他资料。

3D相机无需与被测物件接触,物件进入测量场景即自动采集测量多个人物目标,配对位准后对光照具有较强的稳定性,可适应场景的光照变化,因而也有较高的精确度和即时性,在安防影像监控领域的应用将愈显重要。现阶段基于个体人物的多特征、姿态识别和3D相机等先进AI人工智能分析技术,若能将其结合打造出新一代智能型影像分析监控软体平台,将有助于安全监控系统的建置,同时对数据分析起到示范先驱的作用。

六、推动弱电未来大数据

在AI人工智能分析市场的创新推动下,人们挖掘影像监控中有价值的数据资讯,并不仅只是局限于当前人、事、物的基本资讯而已,同时也需依靠厂商强大的研发能力,可以不断对安防大数据采集的关键资讯进行有效补充,不但为最终的大数据平台带来更具附加价值的资料,也为深度的AI人工智能在安防产业数据应用下,提供源源不绝的产品发展动力。

Copyright © 2021 江苏正翔智能化系统有限公司 技术支持:安优网络苏ICP备2021039519号-1